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Abstract—In this paper, we propose an Inverted-ITL algorithm 

for mining partial periodic-frequent patterns. Although the GPF-

growth algorithm has been proposed to achieve the same goal, it 

needs to construct the prefix tree which needs too much storage 

space and processing time. Moreover, the GPF-growth algorithm 

will scan the database twice and sort each transactional list. To 

avoid those disadvantages, in this paper, we propose the inverted-

ITL algorithm. Our algorithm is more efficient than the GPF-

growth algorithm. We will use one data structure, the ITL-tree, to 

store the items which appear in the database. Therefore, our 

algorithm can need shorter processing time than the GPF-growth 

algorithm.  

Keywords—Frequent Patterns, Itemsets Mining, Periodic 

Patterns, Periodic-Frequent Patterns, Transactional Database 

I. INTRODUCTION 

In recent years, the research of data mining [1, 2] has become 
more popular. There are many techniques for mining interesting 
patterns in the database, like frequent pattern mining [3, 4, 5], 
frequent weighted pattern mining [6], frequent closed pattern 
mining [7], maximal frequent pattern mining [8], and periodic-
frequent pattern mining [9, 10, 11, 12, 13]. Among the above 
techniques, current researches on periodic-frequent pattern 
mining have focused on discovering full periodic-frequent 
patterns in the database. However, partial periodic-frequent 
patterns are more common in the real world, i.e., finding 
frequent patterns which frequently occur but do not successively 
occur one after one in the database. The reason for this 
phenomenon is the imperfect nature of the real-world.  

The periodic-frequent pattern mining is an extension of the 
frequent pattern mining. In the frequent pattern mining, the 
count of the support is the factor which we only care about. 
However, in the periodic-frequent pattern mining, we do not just 
care about the frequency of each item, but also need to make 
sure that the frequent pattern occurs periodically in the 
transactional database [9]. According to the property of the 
transactional database, the database consists of two fields: (1) 
timestamp, and (2) item. The timestamp denotes the current time, 
when a transaction list is generated. For the topic of mining 
periodic-frequent patterns, the item will not appear repeatedly in 
a transaction list. Moreover, we do not have to care about the 
number of the items in a transaction list. That is, a transaction 
list {a, a, b, c} will not appear. Moreover, {a, b, c} and {b, c, a} 
are the same. The timestamp is used to record the time, when a 

transaction list is generated and the transaction lists are sorted 
according to the ascending order of the timestamp. Therefore, 
for the entire database, there may exist time that no transaction 
list is generated. For instance, the list of transactions may 
contain [T1, T2, T3, T5, T6], where time T4 does not appear. 

Take Table 1 as an example, which is denoted by 
transactional database TDB1. Assume that the user-specified 
minimum support is 2, and the user-specified maximum period 
is 3. At first, we scan all the transactions of transactional 
database TDB1 to count the total support and obtain the 
maximum period of the complete set of periods for each item. 
We can exploit these data items to discover which patterns are 
periodic-frequent patterns. Fig. 1 shows the result after scanning 
database TDB1, which is denoted by database TDB2. In 
database TDB2, the symbols ‘ItemN’, ‘CountN’ and ‘MaxD’ 
denote the item-name, the count of the total support, and the 
maximum period of the complete set of periods for each item, 
respectively. 

TABLE I.  AN EXAMPLE OF THE TRANSACTIONAL DATABASE TDB1 

ts Items ts Items 

1 ab 6 degf 

2 acdi 7 abi 

3 cefij 8 cdej 

4 abfgh 9 abef 

5 bd 10 acgi 

 

According to the data of transactional database TDB2, we 
can know the support and the maximum period of each item in 
the database. Take item ‘a’ as an example. CountN is larger than 
or equal to 2 and MaxD is lower than or equal to 3. So item ‘a’ 
is a periodic-frequent pattern. Let’s focus on the item ‘c’, which 
CountN is not less than 2 but its MaxD is larger than 3, so item 
‘c’ is not a periodic-frequent pattern. Next, for item ‘i’, it is not 
a periodic-frequent pattern for the same reason as item ‘c’. 
Although its CountN is larger than 2, its MaxD is larger than 3. 
Then, items ‘j’ and ‘g’ are not periodic-frequent patterns, 
because they have the same reason as the items ‘c’ and ‘i’. That 
is, the MaxD is larger than the threshold. Finally, item ‘h’ also 
is not a periodic-frequent pattern. Because its CountN and 
MaxD, neither of them meet the threshold. Based on the 
definition of anti-monotone, pruning these items will not affect 



the result. Therefore, the result after the pruning step contains 
items ‘a’, ‘b’, ‘d’, ‘e ’, and ‘f’. 

 

Fig. 1. After scanning all transactions of database TDB1, called database 

TDB2 (the minimum support = 2, the maximum period = 3) 

Next, we combine those items into the new candidate size 2 
patterns. Then, after checking, the qualified patterns are ‘ab’ and 
‘ef ’. In the same way, we combine the periodic-frequent size 2 
patterns into the new candidate size 3 patterns to discover the 
periodic-frequent size 3 patterns. The similar process is repeated 
until no periodic-frequent patterns are generated. 

Recently, Kiran et al. have proposed the PFP-growth++ 
algorithm [10], a prefix tree based algorithm. They use the prefix 
tree with the unique timestamp to mine the periodic-frequent 
patterns. However, they do not take the real world situation into 
account. Because in their algorithm, as long as the pattern does 
not meet the threshold once, it will not be considered as the 
periodic-frequent pattern. Later, Kiran et al. proposed the GPF-
growth algorithm [12], which is also a prefix tree based 
algorithm. The GPF-growth algorithm [12] considers fault 
tolerance by adding parameter Periodic-Ratio. It can effectively 
solve the problems encountered by the PFP-growth++ algorithm 
[10].  

The GPF-growth algorithm [12] can find more realistic 
patterns than the PFP-growth++ algorithm [10]. The GPF-
growth algorithm considers about the fault tolerance of each 
pattern. However, we think that the construction of the prefix 
tree of GPF-growth needs too much time and memory space. 
Because the GPF-growth algorithm will scan database twice, 
and reorder each transactional list. Moreover, it constructs 
multiple prefix trees. Therefore, in this paper, we propose the 
Inverted-ITL algorithm to reduce the processing time. In our 
algorithm, we just only scan database once and store information 
of each pattern in two data structures. Later, we use these 
structures to find the periodic-frequent patterns. Therefore, our 
algorithm can need less processing time than the GPF-growth 
algorithm. Note that we do not need too much time to sort each 
transactional list and construct multiple prefix trees. From our 
performance study, we show that the performance of our 
algorithm is more efficient than that of the GPF-growth 
algorithm. 

II. RELATED WORKS 

The Apriori algorithm [3] has a great start and contribution 
to the research of data mining with frequent patterns. However, 
the algorithm is hard to achieve good performance. Later, Han 

et al. propose the FP-growth algorithm [5] for mining frequent 
patterns which scans twice in the database, and the algorithm 
exploits a tree structure, called FP-tree with the count of each 
item in the FP-tree. Next, Deng et al. propose the PrePost 
algorithm [4] and the dFIN algorithm [4] for mining frequent 
patterns with the property of scanning the database twice. 
Moreover, the algorithm exploits a tree structure, called PPC-
tree which is an extension of the FP-tree and a vertical data 
structure, called N-list for each item in the PPC-tree. There are 
many algorithms for data mining which are developed based on 
this structure, such as the PFP-growth algorithm [14], the 
NAFCP algorithm [7], the INLA-MFP algorithm [8], and the 
NFWI algorithm [6]. Although many algorithms have been 
proposed as mentioned above, none of them have considered the 
period. Kiran et al. have proposed the PFP-growth++ algorithm 
[10] for mining periodic-frequent patterns, which considers both 
the frequency and the period for each item. Later, Kiran and 
Reddy use the simplified model [11] to find all frequent patterns 
which have exhibited complete cyclic repetitions in the database. 
Kiran et al. propose the MCPF-model [13] to discover periodic-
frequent patterns involving both frequent and rare items 
effectively. Kiran et al. [9, 10] have discussed greedy search 
techniques to discover periodic-frequent patterns effectively. All 
of these researches have focused on finding full periodic-
frequent patterns. Then, Kiran et al. propose the GPF-growth 
algorithm [12], which considers about the fault tolerance for 
each item. The whole algorithm is basically the same as the PFP-
growth++ algorithm. The difference is the way to decide 
whether a pattern is a periodic-frequent pattern, which will be 
determined according to the percentage of the interest period. 
The components that make up the GPF-growth algorithm are the 
GPF-list and the GPF-tree. The GPF-growth algorithm forms 
the GPF-list by scanning the database once. Then, the GPF-list 
is sorted in the descending order of support for each item. Finally, 
they recursively mine the GPF-tree to discover the complete set 
of partial periodic-frequent patterns. Therefore, the GPF-growth 
algorithm needs to scan the database twice, sort the items once 
and the database once, and build a tree structure to find complete 
set of the partial periodic-frequent patterns. 

III. THE INVERTED ITL ALGORITHM 

In this section, we will introduce our algorithm called the 
Inverted-ITL (Inverted-Item-Time-List) algorithm to mine the 
partial periodic-frequent patterns. 

TABLE II.  AN EXAMPLE OF THE TRANSACTIONAL DATABASE TDB3 

ts Items ts Items 

1 ac 8 cdfg 

2 abg 9 ab 

3 de 10 cdef 

4 abcd 11 abcef 

6 abcd 12 abcd 

7 abe 13 cef 

 

A. Data Structure 

In this subsection, we will use an example database TDB3 to 
explain our algorithm. During the process of partial periodic-
frequent pattern mining, we exploit the support, the interesting 



period, and the periodic-ratio as main factors to determine 
whether the pattern is the partial periodic-frequent pattern or not. 
Thus, we use the ITL-tree, and the ITL-list to record the 
information for each item. Note that we only have to scan the 
database once to record the information and we do not need to 
do any sorting operation with the database. During the mining 
process, we will frequently use these data structures to find the 
partial periodic-frequent patterns. Table 2 shows an example 
database for timestamp ts, and Table 3 shows the variables used 
in our algorithm. Next, we will illustrate the two data structures 
which we will use them in our algorithm. 

TABLE III.  VARIABLES 

Variable Definition 

ItemN The name of the pattern 

CountN The Count of the pattern 

RangeC 
The number of the pattern which is not larger than MaxPer 

during the period 

FirstT The First Timestamp of the pattern 

LastT The Last Timestamp of the pattern 

BP Representing the timestamp of the bit pattern 

Mark 
A boolean flag to check whether the last period of the 

pattern is not larger than the MaxPer 

MinSup The Minimum Support threshold 

MinPR The Minimum Periodic-Ratio threshold 

MaxPer The Maximum Period threshold 

 

The ITL-tree, a tree structure, is used to store all the patterns 
which appear in the database. It is a prefix tree, where each node 
may become a partial periodic-frequent pattern, but the root is 
an empty pattern. All k-length patterns are stored at level k of the 

tree, where k ≥ 1. For instance, in Fig. 2, square boxes represent 

non-candidate patterns, dotted circles represent the candidate 
patterns, and solid circles represent the partial periodic-frequent 
patterns. Moreover, in the ITL-tree, once the pattern is 
confirmed as a non-candidate pattern, its super-set pattern will 
not appear. In other words, no pattern will generate new patterns 
with non-candidate patterns. Finally, the patterns in the solid 
circle are the partial periodic-frequent patterns that we want to 
find. 

 

Fig. 2. The simple diagram of ITL-tree 

The ITL-list as shown in Fig. 3-(a) (which is the result after 
processing the second transaction) contains ItemN, CountN, 
RangeC, FirstT, LastT, Mark, and BP for each pattern. It is used 
to record the useful information of each pattern. Take Table 2 as 
an example. Assume that we have the MinSup = 3, the MinPR = 
75%, and the MaxPer = 2. First, we scan on the first transaction, 

“1: ac ” with ts = 1. Since pattern ‘a’ and pattern ‘c’ are the first 
occurrence, so we create their own ITL-list. Because the ts 
(timestamp) of the first occurrence is not larger than the MaxPer 
and the RangeC plus 1. Therefore, we modify their CountN, 
RangeC, FirstT, and LastT to 1, 1, 1, 1, respectively. Since 
FirstT only records the ts of the first occurrence, so even if it 
appears later, we do not need to deal with this variable. Then, 
we have to deal with the BP part as shown in Fig. 3-(b), where 
BP is a table composed of a series of items and boolean values. 
For the above example, we know that pattern ‘a’ and pattern ‘c’ 
appear, when ts is 1. So in their BP table, we will set the boolean 
value to True at T1. 

Next, we scan the second transaction, “2:  abg ” with ts  = 2.  
Since pattern ‘b’ and pattern ‘g’ are the first occurrence, so we 
create their own ITL-list. Because ts of the first occurrence is 
equal to the MaxPer and the RangeC plus 1. Therefore, we 
modify their CountN, RangeC, FirstT and LastT to 1, 1, 2, 2, 
respectively. Then, the CountN, RangeC, and LastT values of 
pattern ‘a’ are updated to 2, 2, and 2, respectively. Because the 
current ts minus the LastT of pattern ‘a’ is less than MaxPer, 
RangeC is increased by 1. At the same time, for pattern ‘a’, we 
set T2 in BP to True, and for patterns ‘b’ and ‘g’, we do the same 
thing. The result is shown in Fig. 3-(a) and Fig. 3-(b). 

 

Fig. 3. ITL-list and the BP table after scanning the second transaction (‘abg’) : 

(a) the ITL-list; (b) the BP table. 

The same step is processed until the entire database is 
scanned, and the variables which have not been mentioned, 
Mark, will not be decided until the whole database has been 
scanned. For instance, through Table 2, we can know that pattern 
‘a’ last appears in ts 12. If the difference between the timestamp 
of the last transaction of the database and LastT of the pattern is 
less than or equal to MaxPer, we set Mark to True and increase 
RangeC by 1. Take pattern ‘a’ as an example. The gap between 
13 (ts of the last transaction) and 12 (LastT of ‘a’) is less than 
MaxPer, so Mark of ‘a’ is set to True and we increase its RangeC 
by 1. The complete ITL-list of each pattern at level 1 is shown 
in Fig. 4. 

B. The Mining Process 

In this subsection, we will illustrate how to construct the ITL-
tree and the ITL-list in details. Moreover, we will illustrate the 
mining process of our algorithm. 

According to the given transactional database TDB3, which 
is shown in Table 2, we let MinSup = 3, MinPR = 75%, and 
MaxPer = 2 as thresholds to illustrate our algorithm. First of all, 
we scan database TDB3 once to construct the ITL-tree and the 
ITL-list. ITL-list is a list which belongs exclusively to each node 
on the ITL-tree. Therefore, in our algorithm, we mainly use ITL-



tree to mine the partial periodic-frequent pattern and the ITL-list 
is used to record the useful information of each pattern. 

 

 

Fig. 4. The complete ITL-list of each pattern at level 1 

Let’s start with a transactional database TDB3 to construct 
the ITL-tree as shown in Fig. 5 (which is the result after 
processing the second transaction) and the ITL-list. Basically, 
there are two cases which we must concern:  (1) the item never 
appears before; (2) the item has appeared before. For the first 
case, the item never appears before, we add a new node at level 
1 of the ITL-tree and give it a name. At the same time for this 
node, we create its ITL-list. For the second case, the item has 
appeared before, we need to find the node with this name from 
level 1 in the ITL-tree, and then update its ITL-list. When we 
scan the first transaction, we can know that there are two patterns 
in the transaction, which are pattern ‘a’ and ‘c’. When the 
algorithm reads the items in a transaction, it will change the ITL-
list of these patterns in the ITL-tree.  For instance, pattern ‘a’ is 
the first pattern to be scanned, so we insert node ‘a’ into level 1 
of the ITL-tree. At the same time, we will create an ITL-list 
belonging to pattern ‘a’ and start to modify the data inside. The 
CountN is set to 1, because pattern ‘a’ appears for the first time. 
The RangeC is set to 1, because its period (i.e., 1 - 0 = 1, where 
0 is the starting time) is less than MaxPer. The FirstT is set to 1, 
because the first occurrence is at ts 1. The LastT is set to 1, 
because the last occurrence is at ts 1. Next, we set the T1 of BP 
table to True. The remaining items in the first transaction is 
executed by the same way. 

Next, we scan the second transaction. The second transaction 
has patterns ‘a’, ‘b’, and ‘g’. Since pattern ‘a’ already exists at 
level 1 of the ITL-tree, we only need to update the data of its 
ITL-list. Take pattern ‘a’ as an example. In the ITL-list of pattern 
‘a’, its CountN is set to 2. Because it has appeared once before, 
we have 1 + 1 = 2. The RangeC is set to 2, because its period 
(i.e., 2 - 1 = 1, where the first 1 is LastT ) is less than MaxPer. 
The LastT is set to 2, because the pattern ‘a’ appears at ts 2 now. 
Then, for T2 of BP table, we set its BP table entry to True. Next, 
we turn to ‘b’ and ‘g’. Take pattern ‘b’ as an example. Since 
pattern ‘b’ appears for the first time, we insert node ‘b’ into level 
1 of the ITL-tree and create its ITL-list. Then, we set its CountN 
to 1. The RangeC is set to 1, because its period (i.e., 2 - 0 = 2, 

where 0 is the starting time) is equal to MaxPer. The FirstT is 
set to 2, because the first occurrence is at ts 2. The LastT is set 
to 2, because the last occurrence is at ts 2. Moreover, we set the 
T2 of BP table to True. Since ‘b’ does not appear at ts 1, T1 of 
‘b’ is empty. The condition of pattern ‘g’ is the same as pattern 
‘b’, so we do what has done for pattern ‘b’ once for pattern ‘g’. 
As a result, the ITL-tree and the ITL-list after scanning the 
second transaction is shown in Fig. 5. 

 

 

Fig. 5. The ITL-tree and the ITL-list after scanning the second transaction 

Finally, we perform the above process until the entire 
database has been scanned to complete level 1 of the ITL-tree, 
and the ITL-list are shown in Fig. 6. But we have not gotten the 
last period from the last ts (13). This last period will determine 
whether we have to increase RangeC by 1 and set Mark to True. 
At the same time, we can also know which of the patterns at 
level 1 are non-candidate patterns, candidate patterns and partial 
periodic-frequent patterns.  

 

 

Fig. 6. The ITL-tree and the ITL-list after scanning the entire database 



Therefore, the modified ITL-tree and the modified ITL-list 
are shown in Fig. 7. Through Fig. 7, according to the ITL-list of 
each node, we can know, whether this node can become the 
partial periodic-frequent pattern. As long as the number of 
RangeC in the ITL-list is not less than MinPR ×  (MinSup+1) and 
CountN is not less than MinSup, we set it to the dotted circle.  
Furthermore, if RangeC is not less than MinPR ×  (CountN +1), 
we set it to the solid circle, and this pattern is the partial periodic-
frequent pattern which we need. The remaining square boxes are 
considered unnecessary, because its CountN is less than MinSup 
or its RangeC is less than MinPR ×  (MinSup+1). So even if it is 
merged with other patterns, it cannot be a partial periodic-
frequent pattern. Therefore, the partial periodic-frequent size 1 
patterns are patterns ‘a’, ‘c’, ‘b’, ‘d’, and ‘f ’. 

Since we have found all partial periodic-frequent size 1 
patterns, we can start finding partial periodic-frequent 
patterns of size 2. First, we will exploit these dotted or solid 
circle patterns in Fig. 7, where RangeC is larger than or equal 
to the MinPR ×  (MinSup+1) and CountN is not less than 
MinSup. We merge two patterns on the same level of the 

 

 

Fig. 7. The modified ITL-tree and the modified ITL-list 

ITL-tree with the same prefix into a (level+1) super-set 
patterns. Note that the prefix can be null and we do not need 
to merge with the square box. Because it is impossible to 
generate the partial periodic-frequent pattern. Since we want 
to merge the two patterns, we need to decide the order of the 
merged patterns. In the process of generating the size 2 
patterns, we will merge the patterns at level 1 from left to 
right. Take Fig. 7 as an example. Patterns at level 1 of the 

ITL-tree have the order from left to right: [‘a’, ‘c’, ‘b’, ‘d’, 
‘e’, ‘f ’]. Moreover, the pattern will generate a new pattern 
with each pattern after its order, and then it will be the next 
pattern. For instance, pattern ‘a’ will generate the new size 2 
pattern with pattern ‘c’, ‘b’, ‘d’, ‘e’, ‘f ’ and then it will turn 
to pattern ‘c’ and pattern ‘b’, ‘d’, ‘e’, ‘f ’ to generate the new 
size 2 pattern, and so on. 

Next, we illustrate how to generate size 2 patterns at level 
2 of the ITL-tree and complete their ITL-list. Take pattern ‘a’ 
and ‘f ’ as an example. At first, since we cannot find the 
pattern ‘af ’ connected to ‘a’, we create a node ‘af ’ and 
connect it to ‘a’ with an edge. Then, we compare the FirstT 
of patterns ‘a’ and ‘f ’ to find the larger value. This value 
means that when we check the BP table of two patterns, we 
only need to check from the boolean value at this position. 
Because it will never appear at the same timestamp before. 
Similarly, we compare the LastT of the patterns ‘a’ and ‘f ’ 
to find the smaller value. This value means that when we 
check the BP table of two patterns, we only need to check the 
boolean value at this position from the front. Because after 
that, they will never appear at the same timestamp. Take Fig. 
8 as an example. From this Fig., we can know that pattern ‘f ’ 
does not appear before ts 8 and ‘a’ does not appear after ts 12. 
Therefore, we only need to check the boolean value between 
ts 8 and ts 12, which avoids unnecessary actions. 

 

Fig. 8.  The BP table for patterns ‘a’ and ‘f ’ 

Then, we do the ‘AND’ operation on BPs of patterns ‘a’ 
and ‘f ’. This BP table after the ‘AND’ operation is regarded 
as BP table of pattern ‘af ’. We will use this BP table to 
complete its ITL-list. At first, we need to find the timestamp 
with a True value between ts 8 and ts 12. Then, we know that 
the first ts with True is at ts 11. Therefore, we set its CountN, 
RangeC, FirstT , LastT to 1, 0, 11, and 11, respectively. Then, 
we find that the following timestamp has no True. Therefore, 
as long as we find the last period to modify the value of 
RangeC and Mark, we complete the ITL-list of ‘af ’. At the 
same time, we can confirm whether pattern ‘af ’ is the non-
candidate pattern, the candidate pattern or the partial 
periodic-frequent pattern through the ITL-list, which is 
shown in Fig. 9. We apply the above steps to the remaining 
patterns. The result is shown in Fig. 10. The partial periodic-
frequent size 2 patterns are patterns ‘ac’, ‘ab’, ‘cb’, ‘cd’, ‘ce’, 
‘cf ’, and ‘ef ’. 

 

Fig. 9. The ITL-tree and the ITL-list after the pattern ‘af ’ is inserted 



 After mining all the partial periodic-frequent size 2 patterns, 
we start to find the partial periodic-frequent size 3 patterns. 
Similarly, we will merge the two patterns with the same prefix 
at level 2 of the ITL-tree except for the non-candidate patterns. 
So based on the above sentence, we will insert the new size 3 
patterns ‘acb’, ‘cbd’, ‘cbe’, ‘cbf ’, ‘cde’, ‘cbf ’, ‘cef ’ into level 
3 of the ITL-tree, and follow the previous steps to complete their 
ITL-list. 

Then, we confirm the type of each pattern according to their 
ITL-list. The result is shown in Fig. 11. According to this figure, 
we can know that the pattern ‘acb’ and ‘cef ’ are partial periodic-
frequent patterns. Moreover, there is no size 4 pattern which can 
be generated. So all the partial periodic-frequent patterns in this 
database have been found. 

Finally, we compare the difference between our Inverted-
ITL algorithm and the GPF-growth algorithm [12] for mining 
partial periodic-frequent pattern mining. We consider the 
original data in Table 2 as the input. When our algorithm 
constructs the data structures for the mining process, our 

algorithm only needs to scan database once and does not need 
the sorting step. However, the GPF-growth algorithm needs 
scanning database twice and sorts each transaction. Moreover, 
the GPF-growth algorithm needs to generate a prefix tree based 
on the reordered database, and it will generate many prefix trees 
during the mining process. 

IV. PERFORMANCE 

A. The Performance Model 

We compare the processing time of the Inverted-ITL 
algorithm and the GPF-growth algorithm [12]. for mining 
partial periodic-frequent patterns in the real and synthetic 
datasets. We will consider using different values of the 
minimum support threshold, the maximum period threshold, and 
the minimum periodic-ratio threshold to execute different size 
datasets on the algorithm. For the real datasets, we use the Retail 
dataset (http://fimi.ua.ac.be/data/) for experiments. The details 
of the dataset Retail contains the transaction count = 88162, the 
item count = 16470 and the average item count per transaction 
= 10.30. For the synthetic dataset, T10.I4.D100K was generated 

 

Fig. 10. The size 2 patterns of the ITL-tree 

 

Fig. 11. The size 3 patterns of the ITL-tree 



by using the generator from the IBM Quest Dataset Generator. 
The parameter T, I, and D represents the average item count per 
transaction, the average maximal size of frequent itemsets, and 
the number of transactions in the dataset, respectively. 

B. Experiments Results 

First, let’s deal with the Retail dataset. In Fig. 12, we show 
the comparison of the processing time for the Retail dataset and 
the synthetic dataset under the change of the maximum period 
threshold. In this experiment, we set the minimum support 
threshold = 0.01% and the minimum periodic-ratio threshold = 
0.01%. Through Fig. 12-(a), we observe that both our algorithm 
and the GPF-growth algorithm maintain a fairly stable curve. 
The reason is that all items in the Retail dataset, except for the 
few specific items, the rest of the items will basically not repeat 
within the threshold, so this situation will happen. Moreover, 
according to this figure, it shows that we provide better 
performance than the GPF-growth algorithm which scans the 
dataset twice and sorts many times. From Fig. 12-(b), we 
observe that the performance of our algorithm is also better than 
that of the GPF-growth algorithm. 

 

     (a) 

 

   (b) 

Fig. 12. A comparison of the processing time under the change of the maximum 

period threshold: (a) for the Retail dataset; (b) for the synthetic dataset. 

In Fig. 13, we show the comparison of the processing time 
for the Retail dataset and the synthetic dataset under the change 
of the minimum support threshold. In this experiment, we set the 
maximum period threshold = 10 and the minimum periodic-ratio 
threshold = 0.01%. Through Fig. 13-(a), we observe that as the 
value of minimum support threshold increases, the processing 
time of the two algorithms decreases. The reason is that only a 
small number of patterns can meet the threshold of support, 
when the minimum support threshold increases. When the 
number of the candidate patterns continues to decrease, the 
processing time also decreases. Through this figure, we observe 

that when the number of candidate patterns continues to 
decrease, the time curve of the GPF-growth algorithm will 
change greatly. However, our algorithm changes relatively small. 
This is because as long as the number of candidate patterns 
increases, the number of times that the GPF-growth algorithm 
needs to be sorted and the number of prefix trees generated will 
also increase. However, our algorithm only needs to process the 
ITL-list of each candidate pattern which are already in the ITL-
tree. Therefore, in Fig. 13-(a), the processing time of our 
algorithm is faster than the GPF-growth algorithm. In Fig. 13-
(b), the performance of our algorithm is also better than that of 
the GPF-growth algorithm. 

 

        (a) 

 

         (b) 

Fig. 13. A comparison of the processing time under the change of the minimum 

support threshold: (a) for the Retail dataset; (b) for the synthetic dataset. 

In Fig. 14, we show the comparison of the processing time 
for the Retail dataset and the synthetic dataset under the change 
of the minimum periodic-ratio threshold. In this experiment, we 
set the maximum period threshold = 10 and the minimum 
support threshold = 0.01%. Through Fig. 14-(a), we can observe 
that the minimum periodic-ratio threshold has small effect on 
the performance of two algorithms. So our algorithm has better 
performance than the GPF-growth algorithm. In Fig. 14-(b), the 
performance of our algorithm is also better than that of the GPF-
growth algorithm. 

 In Fig. 15, we show the comparison of the processing time 
for the Retail dataset and the synthetic dataset under the change 
of the data size. In this experiment, we set the maximum period 
threshold = 10, the minimum support threshold = 0.01%, and the 
minimum periodic-ratio threshold = 0.01%. Through Fig. 15-(a), 
we can observe that as the size of the dataset increases, the 
processing time also increases. However, the growth rate of the 
GPF-growth algorithm is significantly larger than that of our 
algorithm. Because as the size of the dataset increases, the GPF- 
growth algorithm needs to sort the items in more transactions, 



but our algorithm only needs to deal with the ITL-list of each 
candidate pattern in the ITL-tree. Therefore, the GPF-growth 
algorithm needs a lot of time to deal with sorting and generating 
prefix trees, and we only need to deal with each pattern in the 
ITL-tree. Through Fig. 15-(b), the performance of our algorithm 
is also better than that of the GPF-growth algorithm. 

 

     (a) 

 

     (b) 

Fig. 14. A comparison of the processing time under the change of the minimum 

periodic-ratio: (a) for the Retail dataset; (b) for the synthetic dataset. 

     

   (a) 

 

  (b) 

Fig. 15. A comparison of the processing time under the change of the change 

of the data size: (a) for the Retail dataset; (b) for the synthetic dataset. 

V. CONCLUSION 

In this paper, we have proposed an Inverted-ITL algorithm 
which can efficiently mine the partial periodic-frequent patterns. 
In the data mining, we have constructed the ITL-tree and the 
ITL-list which need less processing time to store information of 
each pattern than the GPF-growth algorithm for the same 
transactional database. From our simulation result, we have 
shown that our algorithm is more efficient than the GPF-growth 
algorithm. 
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