
XXX-X-XXXX-XXXX-X/XX/$XX.00 © 20XX IEEE

An Inverted-ITL Algorithm for Mining Partial

Periodic-Frequent Patterns

Ye-In Chang

Dept. of Computer Science and Engineering

National Sun Yat-Sen University

Kaohsiung, Taiwan, Republic of China

changyi@mail.cse.nsysu.edu.tw

Xin-Long Chen

Dept. of Computer Science and Engineering

National Sun Yat-Sen University

Kaohsiung, Taiwan, Republic of China

chenxl@db.cse.nsysu.edu.tw

Sheng-Hsin Chiang

Dept. of Computer Science and Engineering

National Sun Yat-Sen University

Kaohsiung, Taiwan, Republic of China

chiangsh@db.cse.nsysu.edu.tw

Abstract—In this paper, we propose an Inverted-ITL algorithm

for mining partial periodic-frequent patterns. Although the GPF-

growth algorithm has been proposed to achieve the same goal, it

needs to construct the prefix tree which needs too much storage

space and processing time. Moreover, the GPF-growth algorithm

will scan the database twice and sort each transactional list. To

avoid those disadvantages, in this paper, we propose the inverted-

ITL algorithm. Our algorithm is more efficient than the GPF-

growth algorithm. We will use one data structure, the ITL-tree, to

store the items which appear in the database. Therefore, our

algorithm can need shorter processing time than the GPF-growth

algorithm.

Keywords—Frequent Patterns, Itemsets Mining, Periodic

Patterns, Periodic-Frequent Patterns, Transactional Database

I. INTRODUCTION

In recent years, the research of data mining [1, 2] has become
more popular. There are many techniques for mining interesting
patterns in the database, like frequent pattern mining [3, 4, 5],
frequent weighted pattern mining [6], frequent closed pattern
mining [7], maximal frequent pattern mining [8], and periodic-
frequent pattern mining [9, 10, 11, 12, 13]. Among the above
techniques, current researches on periodic-frequent pattern
mining have focused on discovering full periodic-frequent
patterns in the database. However, partial periodic-frequent
patterns are more common in the real world, i.e., finding
frequent patterns which frequently occur but do not successively
occur one after one in the database. The reason for this
phenomenon is the imperfect nature of the real-world.

The periodic-frequent pattern mining is an extension of the
frequent pattern mining. In the frequent pattern mining, the
count of the support is the factor which we only care about.
However, in the periodic-frequent pattern mining, we do not just
care about the frequency of each item, but also need to make
sure that the frequent pattern occurs periodically in the
transactional database [9]. According to the property of the
transactional database, the database consists of two fields: (1)
timestamp, and (2) item. The timestamp denotes the current time,
when a transaction list is generated. For the topic of mining
periodic-frequent patterns, the item will not appear repeatedly in
a transaction list. Moreover, we do not have to care about the
number of the items in a transaction list. That is, a transaction
list {a, a, b, c} will not appear. Moreover, {a, b, c} and {b, c, a}
are the same. The timestamp is used to record the time, when a

transaction list is generated and the transaction lists are sorted
according to the ascending order of the timestamp. Therefore,
for the entire database, there may exist time that no transaction
list is generated. For instance, the list of transactions may
contain [T1, T2, T3, T5, T6], where time T4 does not appear.

Take Table 1 as an example, which is denoted by
transactional database TDB1. Assume that the user-specified
minimum support is 2, and the user-specified maximum period
is 3. At first, we scan all the transactions of transactional
database TDB1 to count the total support and obtain the
maximum period of the complete set of periods for each item.
We can exploit these data items to discover which patterns are
periodic-frequent patterns. Fig. 1 shows the result after scanning
database TDB1, which is denoted by database TDB2. In
database TDB2, the symbols ‘ItemN’, ‘CountN’ and ‘MaxD’
denote the item-name, the count of the total support, and the
maximum period of the complete set of periods for each item,
respectively.

TABLE I. AN EXAMPLE OF THE TRANSACTIONAL DATABASE TDB1

ts Items ts Items

1 ab 6 degf

2 acdi 7 abi

3 cefij 8 cdej

4 abfgh 9 abef

5 bd 10 acgi

According to the data of transactional database TDB2, we
can know the support and the maximum period of each item in
the database. Take item ‘a’ as an example. CountN is larger than
or equal to 2 and MaxD is lower than or equal to 3. So item ‘a’
is a periodic-frequent pattern. Let’s focus on the item ‘c’, which
CountN is not less than 2 but its MaxD is larger than 3, so item
‘c’ is not a periodic-frequent pattern. Next, for item ‘i’, it is not
a periodic-frequent pattern for the same reason as item ‘c’.
Although its CountN is larger than 2, its MaxD is larger than 3.
Then, items ‘j’ and ‘g’ are not periodic-frequent patterns,
because they have the same reason as the items ‘c’ and ‘i’. That
is, the MaxD is larger than the threshold. Finally, item ‘h’ also
is not a periodic-frequent pattern. Because its CountN and
MaxD, neither of them meet the threshold. Based on the
definition of anti-monotone, pruning these items will not affect

the result. Therefore, the result after the pruning step contains
items ‘a’, ‘b’, ‘d’, ‘e ’, and ‘f’.

Fig. 1. After scanning all transactions of database TDB1, called database

TDB2 (the minimum support = 2, the maximum period = 3)

Next, we combine those items into the new candidate size 2
patterns. Then, after checking, the qualified patterns are ‘ab’ and
‘ef ’. In the same way, we combine the periodic-frequent size 2
patterns into the new candidate size 3 patterns to discover the
periodic-frequent size 3 patterns. The similar process is repeated
until no periodic-frequent patterns are generated.

Recently, Kiran et al. have proposed the PFP-growth++
algorithm [10], a prefix tree based algorithm. They use the prefix
tree with the unique timestamp to mine the periodic-frequent
patterns. However, they do not take the real world situation into
account. Because in their algorithm, as long as the pattern does
not meet the threshold once, it will not be considered as the
periodic-frequent pattern. Later, Kiran et al. proposed the GPF-
growth algorithm [12], which is also a prefix tree based
algorithm. The GPF-growth algorithm [12] considers fault
tolerance by adding parameter Periodic-Ratio. It can effectively
solve the problems encountered by the PFP-growth++ algorithm
[10].

The GPF-growth algorithm [12] can find more realistic
patterns than the PFP-growth++ algorithm [10]. The GPF-
growth algorithm considers about the fault tolerance of each
pattern. However, we think that the construction of the prefix
tree of GPF-growth needs too much time and memory space.
Because the GPF-growth algorithm will scan database twice,
and reorder each transactional list. Moreover, it constructs
multiple prefix trees. Therefore, in this paper, we propose the
Inverted-ITL algorithm to reduce the processing time. In our
algorithm, we just only scan database once and store information
of each pattern in two data structures. Later, we use these
structures to find the periodic-frequent patterns. Therefore, our
algorithm can need less processing time than the GPF-growth
algorithm. Note that we do not need too much time to sort each
transactional list and construct multiple prefix trees. From our
performance study, we show that the performance of our
algorithm is more efficient than that of the GPF-growth
algorithm.

II. RELATED WORKS

The Apriori algorithm [3] has a great start and contribution
to the research of data mining with frequent patterns. However,
the algorithm is hard to achieve good performance. Later, Han

et al. propose the FP-growth algorithm [5] for mining frequent
patterns which scans twice in the database, and the algorithm
exploits a tree structure, called FP-tree with the count of each
item in the FP-tree. Next, Deng et al. propose the PrePost
algorithm [4] and the dFIN algorithm [4] for mining frequent
patterns with the property of scanning the database twice.
Moreover, the algorithm exploits a tree structure, called PPC-
tree which is an extension of the FP-tree and a vertical data
structure, called N-list for each item in the PPC-tree. There are
many algorithms for data mining which are developed based on
this structure, such as the PFP-growth algorithm [14], the
NAFCP algorithm [7], the INLA-MFP algorithm [8], and the
NFWI algorithm [6]. Although many algorithms have been
proposed as mentioned above, none of them have considered the
period. Kiran et al. have proposed the PFP-growth++ algorithm
[10] for mining periodic-frequent patterns, which considers both
the frequency and the period for each item. Later, Kiran and
Reddy use the simplified model [11] to find all frequent patterns
which have exhibited complete cyclic repetitions in the database.
Kiran et al. propose the MCPF-model [13] to discover periodic-
frequent patterns involving both frequent and rare items
effectively. Kiran et al. [9, 10] have discussed greedy search
techniques to discover periodic-frequent patterns effectively. All
of these researches have focused on finding full periodic-
frequent patterns. Then, Kiran et al. propose the GPF-growth
algorithm [12], which considers about the fault tolerance for
each item. The whole algorithm is basically the same as the PFP-
growth++ algorithm. The difference is the way to decide
whether a pattern is a periodic-frequent pattern, which will be
determined according to the percentage of the interest period.
The components that make up the GPF-growth algorithm are the
GPF-list and the GPF-tree. The GPF-growth algorithm forms
the GPF-list by scanning the database once. Then, the GPF-list
is sorted in the descending order of support for each item. Finally,
they recursively mine the GPF-tree to discover the complete set
of partial periodic-frequent patterns. Therefore, the GPF-growth
algorithm needs to scan the database twice, sort the items once
and the database once, and build a tree structure to find complete
set of the partial periodic-frequent patterns.

III. THE INVERTED ITL ALGORITHM

In this section, we will introduce our algorithm called the
Inverted-ITL (Inverted-Item-Time-List) algorithm to mine the
partial periodic-frequent patterns.

TABLE II. AN EXAMPLE OF THE TRANSACTIONAL DATABASE TDB3

ts Items ts Items

1 ac 8 cdfg

2 abg 9 ab

3 de 10 cdef

4 abcd 11 abcef

6 abcd 12 abcd

7 abe 13 cef

A. Data Structure

In this subsection, we will use an example database TDB3 to
explain our algorithm. During the process of partial periodic-
frequent pattern mining, we exploit the support, the interesting

period, and the periodic-ratio as main factors to determine
whether the pattern is the partial periodic-frequent pattern or not.
Thus, we use the ITL-tree, and the ITL-list to record the
information for each item. Note that we only have to scan the
database once to record the information and we do not need to
do any sorting operation with the database. During the mining
process, we will frequently use these data structures to find the
partial periodic-frequent patterns. Table 2 shows an example
database for timestamp ts, and Table 3 shows the variables used
in our algorithm. Next, we will illustrate the two data structures
which we will use them in our algorithm.

TABLE III. VARIABLES

Variable Definition

ItemN The name of the pattern

CountN The Count of the pattern

RangeC
The number of the pattern which is not larger than MaxPer

during the period

FirstT The First Timestamp of the pattern

LastT The Last Timestamp of the pattern

BP Representing the timestamp of the bit pattern

Mark
A boolean flag to check whether the last period of the

pattern is not larger than the MaxPer

MinSup The Minimum Support threshold

MinPR The Minimum Periodic-Ratio threshold

MaxPer The Maximum Period threshold

The ITL-tree, a tree structure, is used to store all the patterns
which appear in the database. It is a prefix tree, where each node
may become a partial periodic-frequent pattern, but the root is
an empty pattern. All k-length patterns are stored at level k of the

tree, where k ≥ 1. For instance, in Fig. 2, square boxes represent

non-candidate patterns, dotted circles represent the candidate
patterns, and solid circles represent the partial periodic-frequent
patterns. Moreover, in the ITL-tree, once the pattern is
confirmed as a non-candidate pattern, its super-set pattern will
not appear. In other words, no pattern will generate new patterns
with non-candidate patterns. Finally, the patterns in the solid
circle are the partial periodic-frequent patterns that we want to
find.

Fig. 2. The simple diagram of ITL-tree

The ITL-list as shown in Fig. 3-(a) (which is the result after
processing the second transaction) contains ItemN, CountN,
RangeC, FirstT, LastT, Mark, and BP for each pattern. It is used
to record the useful information of each pattern. Take Table 2 as
an example. Assume that we have the MinSup = 3, the MinPR =
75%, and the MaxPer = 2. First, we scan on the first transaction,

“1: ac ” with ts = 1. Since pattern ‘a’ and pattern ‘c’ are the first
occurrence, so we create their own ITL-list. Because the ts
(timestamp) of the first occurrence is not larger than the MaxPer
and the RangeC plus 1. Therefore, we modify their CountN,
RangeC, FirstT, and LastT to 1, 1, 1, 1, respectively. Since
FirstT only records the ts of the first occurrence, so even if it
appears later, we do not need to deal with this variable. Then,
we have to deal with the BP part as shown in Fig. 3-(b), where
BP is a table composed of a series of items and boolean values.
For the above example, we know that pattern ‘a’ and pattern ‘c’
appear, when ts is 1. So in their BP table, we will set the boolean
value to True at T1.

Next, we scan the second transaction, “2: abg ” with ts = 2.
Since pattern ‘b’ and pattern ‘g’ are the first occurrence, so we
create their own ITL-list. Because ts of the first occurrence is
equal to the MaxPer and the RangeC plus 1. Therefore, we
modify their CountN, RangeC, FirstT and LastT to 1, 1, 2, 2,
respectively. Then, the CountN, RangeC, and LastT values of
pattern ‘a’ are updated to 2, 2, and 2, respectively. Because the
current ts minus the LastT of pattern ‘a’ is less than MaxPer,
RangeC is increased by 1. At the same time, for pattern ‘a’, we
set T2 in BP to True, and for patterns ‘b’ and ‘g’, we do the same
thing. The result is shown in Fig. 3-(a) and Fig. 3-(b).

Fig. 3. ITL-list and the BP table after scanning the second transaction (‘abg’) :

(a) the ITL-list; (b) the BP table.

The same step is processed until the entire database is
scanned, and the variables which have not been mentioned,
Mark, will not be decided until the whole database has been
scanned. For instance, through Table 2, we can know that pattern
‘a’ last appears in ts 12. If the difference between the timestamp
of the last transaction of the database and LastT of the pattern is
less than or equal to MaxPer, we set Mark to True and increase
RangeC by 1. Take pattern ‘a’ as an example. The gap between
13 (ts of the last transaction) and 12 (LastT of ‘a’) is less than
MaxPer, so Mark of ‘a’ is set to True and we increase its RangeC
by 1. The complete ITL-list of each pattern at level 1 is shown
in Fig. 4.

B. The Mining Process

In this subsection, we will illustrate how to construct the ITL-
tree and the ITL-list in details. Moreover, we will illustrate the
mining process of our algorithm.

According to the given transactional database TDB3, which
is shown in Table 2, we let MinSup = 3, MinPR = 75%, and
MaxPer = 2 as thresholds to illustrate our algorithm. First of all,
we scan database TDB3 once to construct the ITL-tree and the
ITL-list. ITL-list is a list which belongs exclusively to each node
on the ITL-tree. Therefore, in our algorithm, we mainly use ITL-

tree to mine the partial periodic-frequent pattern and the ITL-list
is used to record the useful information of each pattern.

Fig. 4. The complete ITL-list of each pattern at level 1

Let’s start with a transactional database TDB3 to construct
the ITL-tree as shown in Fig. 5 (which is the result after
processing the second transaction) and the ITL-list. Basically,
there are two cases which we must concern: (1) the item never
appears before; (2) the item has appeared before. For the first
case, the item never appears before, we add a new node at level
1 of the ITL-tree and give it a name. At the same time for this
node, we create its ITL-list. For the second case, the item has
appeared before, we need to find the node with this name from
level 1 in the ITL-tree, and then update its ITL-list. When we
scan the first transaction, we can know that there are two patterns
in the transaction, which are pattern ‘a’ and ‘c’. When the
algorithm reads the items in a transaction, it will change the ITL-
list of these patterns in the ITL-tree. For instance, pattern ‘a’ is
the first pattern to be scanned, so we insert node ‘a’ into level 1
of the ITL-tree. At the same time, we will create an ITL-list
belonging to pattern ‘a’ and start to modify the data inside. The
CountN is set to 1, because pattern ‘a’ appears for the first time.
The RangeC is set to 1, because its period (i.e., 1 - 0 = 1, where
0 is the starting time) is less than MaxPer. The FirstT is set to 1,
because the first occurrence is at ts 1. The LastT is set to 1,
because the last occurrence is at ts 1. Next, we set the T1 of BP
table to True. The remaining items in the first transaction is
executed by the same way.

Next, we scan the second transaction. The second transaction
has patterns ‘a’, ‘b’, and ‘g’. Since pattern ‘a’ already exists at
level 1 of the ITL-tree, we only need to update the data of its
ITL-list. Take pattern ‘a’ as an example. In the ITL-list of pattern
‘a’, its CountN is set to 2. Because it has appeared once before,
we have 1 + 1 = 2. The RangeC is set to 2, because its period
(i.e., 2 - 1 = 1, where the first 1 is LastT) is less than MaxPer.
The LastT is set to 2, because the pattern ‘a’ appears at ts 2 now.
Then, for T2 of BP table, we set its BP table entry to True. Next,
we turn to ‘b’ and ‘g’. Take pattern ‘b’ as an example. Since
pattern ‘b’ appears for the first time, we insert node ‘b’ into level
1 of the ITL-tree and create its ITL-list. Then, we set its CountN
to 1. The RangeC is set to 1, because its period (i.e., 2 - 0 = 2,

where 0 is the starting time) is equal to MaxPer. The FirstT is
set to 2, because the first occurrence is at ts 2. The LastT is set
to 2, because the last occurrence is at ts 2. Moreover, we set the
T2 of BP table to True. Since ‘b’ does not appear at ts 1, T1 of
‘b’ is empty. The condition of pattern ‘g’ is the same as pattern
‘b’, so we do what has done for pattern ‘b’ once for pattern ‘g’.
As a result, the ITL-tree and the ITL-list after scanning the
second transaction is shown in Fig. 5.

Fig. 5. The ITL-tree and the ITL-list after scanning the second transaction

Finally, we perform the above process until the entire
database has been scanned to complete level 1 of the ITL-tree,
and the ITL-list are shown in Fig. 6. But we have not gotten the
last period from the last ts (13). This last period will determine
whether we have to increase RangeC by 1 and set Mark to True.
At the same time, we can also know which of the patterns at
level 1 are non-candidate patterns, candidate patterns and partial
periodic-frequent patterns.

Fig. 6. The ITL-tree and the ITL-list after scanning the entire database

Therefore, the modified ITL-tree and the modified ITL-list
are shown in Fig. 7. Through Fig. 7, according to the ITL-list of
each node, we can know, whether this node can become the
partial periodic-frequent pattern. As long as the number of
RangeC in the ITL-list is not less than MinPR × (MinSup+1) and
CountN is not less than MinSup, we set it to the dotted circle.
Furthermore, if RangeC is not less than MinPR × (CountN +1),
we set it to the solid circle, and this pattern is the partial periodic-
frequent pattern which we need. The remaining square boxes are
considered unnecessary, because its CountN is less than MinSup
or its RangeC is less than MinPR × (MinSup+1). So even if it is
merged with other patterns, it cannot be a partial periodic-
frequent pattern. Therefore, the partial periodic-frequent size 1
patterns are patterns ‘a’, ‘c’, ‘b’, ‘d’, and ‘f ’.

Since we have found all partial periodic-frequent size 1
patterns, we can start finding partial periodic-frequent
patterns of size 2. First, we will exploit these dotted or solid
circle patterns in Fig. 7, where RangeC is larger than or equal
to the MinPR × (MinSup+1) and CountN is not less than
MinSup. We merge two patterns on the same level of the

Fig. 7. The modified ITL-tree and the modified ITL-list

ITL-tree with the same prefix into a (level+1) super-set
patterns. Note that the prefix can be null and we do not need
to merge with the square box. Because it is impossible to
generate the partial periodic-frequent pattern. Since we want
to merge the two patterns, we need to decide the order of the
merged patterns. In the process of generating the size 2
patterns, we will merge the patterns at level 1 from left to
right. Take Fig. 7 as an example. Patterns at level 1 of the

ITL-tree have the order from left to right: [‘a’, ‘c’, ‘b’, ‘d’,
‘e’, ‘f ’]. Moreover, the pattern will generate a new pattern
with each pattern after its order, and then it will be the next
pattern. For instance, pattern ‘a’ will generate the new size 2
pattern with pattern ‘c’, ‘b’, ‘d’, ‘e’, ‘f ’ and then it will turn
to pattern ‘c’ and pattern ‘b’, ‘d’, ‘e’, ‘f ’ to generate the new
size 2 pattern, and so on.

Next, we illustrate how to generate size 2 patterns at level
2 of the ITL-tree and complete their ITL-list. Take pattern ‘a’
and ‘f ’ as an example. At first, since we cannot find the
pattern ‘af ’ connected to ‘a’, we create a node ‘af ’ and
connect it to ‘a’ with an edge. Then, we compare the FirstT
of patterns ‘a’ and ‘f ’ to find the larger value. This value
means that when we check the BP table of two patterns, we
only need to check from the boolean value at this position.
Because it will never appear at the same timestamp before.
Similarly, we compare the LastT of the patterns ‘a’ and ‘f ’
to find the smaller value. This value means that when we
check the BP table of two patterns, we only need to check the
boolean value at this position from the front. Because after
that, they will never appear at the same timestamp. Take Fig.
8 as an example. From this Fig., we can know that pattern ‘f ’
does not appear before ts 8 and ‘a’ does not appear after ts 12.
Therefore, we only need to check the boolean value between
ts 8 and ts 12, which avoids unnecessary actions.

Fig. 8. The BP table for patterns ‘a’ and ‘f ’

Then, we do the ‘AND’ operation on BPs of patterns ‘a’
and ‘f ’. This BP table after the ‘AND’ operation is regarded
as BP table of pattern ‘af ’. We will use this BP table to
complete its ITL-list. At first, we need to find the timestamp
with a True value between ts 8 and ts 12. Then, we know that
the first ts with True is at ts 11. Therefore, we set its CountN,
RangeC, FirstT , LastT to 1, 0, 11, and 11, respectively. Then,
we find that the following timestamp has no True. Therefore,
as long as we find the last period to modify the value of
RangeC and Mark, we complete the ITL-list of ‘af ’. At the
same time, we can confirm whether pattern ‘af ’ is the non-
candidate pattern, the candidate pattern or the partial
periodic-frequent pattern through the ITL-list, which is
shown in Fig. 9. We apply the above steps to the remaining
patterns. The result is shown in Fig. 10. The partial periodic-
frequent size 2 patterns are patterns ‘ac’, ‘ab’, ‘cb’, ‘cd’, ‘ce’,
‘cf ’, and ‘ef ’.

Fig. 9. The ITL-tree and the ITL-list after the pattern ‘af ’ is inserted

 After mining all the partial periodic-frequent size 2 patterns,
we start to find the partial periodic-frequent size 3 patterns.
Similarly, we will merge the two patterns with the same prefix
at level 2 of the ITL-tree except for the non-candidate patterns.
So based on the above sentence, we will insert the new size 3
patterns ‘acb’, ‘cbd’, ‘cbe’, ‘cbf ’, ‘cde’, ‘cbf ’, ‘cef ’ into level
3 of the ITL-tree, and follow the previous steps to complete their
ITL-list.

Then, we confirm the type of each pattern according to their
ITL-list. The result is shown in Fig. 11. According to this figure,
we can know that the pattern ‘acb’ and ‘cef ’ are partial periodic-
frequent patterns. Moreover, there is no size 4 pattern which can
be generated. So all the partial periodic-frequent patterns in this
database have been found.

Finally, we compare the difference between our Inverted-
ITL algorithm and the GPF-growth algorithm [12] for mining
partial periodic-frequent pattern mining. We consider the
original data in Table 2 as the input. When our algorithm
constructs the data structures for the mining process, our

algorithm only needs to scan database once and does not need
the sorting step. However, the GPF-growth algorithm needs
scanning database twice and sorts each transaction. Moreover,
the GPF-growth algorithm needs to generate a prefix tree based
on the reordered database, and it will generate many prefix trees
during the mining process.

IV. PERFORMANCE

A. The Performance Model

We compare the processing time of the Inverted-ITL
algorithm and the GPF-growth algorithm [12]. for mining
partial periodic-frequent patterns in the real and synthetic
datasets. We will consider using different values of the
minimum support threshold, the maximum period threshold, and
the minimum periodic-ratio threshold to execute different size
datasets on the algorithm. For the real datasets, we use the Retail
dataset (http://fimi.ua.ac.be/data/) for experiments. The details
of the dataset Retail contains the transaction count = 88162, the
item count = 16470 and the average item count per transaction
= 10.30. For the synthetic dataset, T10.I4.D100K was generated

Fig. 10. The size 2 patterns of the ITL-tree

Fig. 11. The size 3 patterns of the ITL-tree

by using the generator from the IBM Quest Dataset Generator.
The parameter T, I, and D represents the average item count per
transaction, the average maximal size of frequent itemsets, and
the number of transactions in the dataset, respectively.

B. Experiments Results

First, let’s deal with the Retail dataset. In Fig. 12, we show
the comparison of the processing time for the Retail dataset and
the synthetic dataset under the change of the maximum period
threshold. In this experiment, we set the minimum support
threshold = 0.01% and the minimum periodic-ratio threshold =
0.01%. Through Fig. 12-(a), we observe that both our algorithm
and the GPF-growth algorithm maintain a fairly stable curve.
The reason is that all items in the Retail dataset, except for the
few specific items, the rest of the items will basically not repeat
within the threshold, so this situation will happen. Moreover,
according to this figure, it shows that we provide better
performance than the GPF-growth algorithm which scans the
dataset twice and sorts many times. From Fig. 12-(b), we
observe that the performance of our algorithm is also better than
that of the GPF-growth algorithm.

 (a)

 (b)

Fig. 12. A comparison of the processing time under the change of the maximum

period threshold: (a) for the Retail dataset; (b) for the synthetic dataset.

In Fig. 13, we show the comparison of the processing time
for the Retail dataset and the synthetic dataset under the change
of the minimum support threshold. In this experiment, we set the
maximum period threshold = 10 and the minimum periodic-ratio
threshold = 0.01%. Through Fig. 13-(a), we observe that as the
value of minimum support threshold increases, the processing
time of the two algorithms decreases. The reason is that only a
small number of patterns can meet the threshold of support,
when the minimum support threshold increases. When the
number of the candidate patterns continues to decrease, the
processing time also decreases. Through this figure, we observe

that when the number of candidate patterns continues to
decrease, the time curve of the GPF-growth algorithm will
change greatly. However, our algorithm changes relatively small.
This is because as long as the number of candidate patterns
increases, the number of times that the GPF-growth algorithm
needs to be sorted and the number of prefix trees generated will
also increase. However, our algorithm only needs to process the
ITL-list of each candidate pattern which are already in the ITL-
tree. Therefore, in Fig. 13-(a), the processing time of our
algorithm is faster than the GPF-growth algorithm. In Fig. 13-
(b), the performance of our algorithm is also better than that of
the GPF-growth algorithm.

 (a)

 (b)

Fig. 13. A comparison of the processing time under the change of the minimum

support threshold: (a) for the Retail dataset; (b) for the synthetic dataset.

In Fig. 14, we show the comparison of the processing time
for the Retail dataset and the synthetic dataset under the change
of the minimum periodic-ratio threshold. In this experiment, we
set the maximum period threshold = 10 and the minimum
support threshold = 0.01%. Through Fig. 14-(a), we can observe
that the minimum periodic-ratio threshold has small effect on
the performance of two algorithms. So our algorithm has better
performance than the GPF-growth algorithm. In Fig. 14-(b), the
performance of our algorithm is also better than that of the GPF-
growth algorithm.

 In Fig. 15, we show the comparison of the processing time
for the Retail dataset and the synthetic dataset under the change
of the data size. In this experiment, we set the maximum period
threshold = 10, the minimum support threshold = 0.01%, and the
minimum periodic-ratio threshold = 0.01%. Through Fig. 15-(a),
we can observe that as the size of the dataset increases, the
processing time also increases. However, the growth rate of the
GPF-growth algorithm is significantly larger than that of our
algorithm. Because as the size of the dataset increases, the GPF-
growth algorithm needs to sort the items in more transactions,

but our algorithm only needs to deal with the ITL-list of each
candidate pattern in the ITL-tree. Therefore, the GPF-growth
algorithm needs a lot of time to deal with sorting and generating
prefix trees, and we only need to deal with each pattern in the
ITL-tree. Through Fig. 15-(b), the performance of our algorithm
is also better than that of the GPF-growth algorithm.

 (a)

 (b)

Fig. 14. A comparison of the processing time under the change of the minimum

periodic-ratio: (a) for the Retail dataset; (b) for the synthetic dataset.

 (a)

 (b)

Fig. 15. A comparison of the processing time under the change of the change

of the data size: (a) for the Retail dataset; (b) for the synthetic dataset.

V. CONCLUSION

In this paper, we have proposed an Inverted-ITL algorithm
which can efficiently mine the partial periodic-frequent patterns.
In the data mining, we have constructed the ITL-tree and the
ITL-list which need less processing time to store information of
each pattern than the GPF-growth algorithm for the same
transactional database. From our simulation result, we have
shown that our algorithm is more efficient than the GPF-growth
algorithm.

ACKNOWLEDGMENT

This research was supported in part by the National Science
Council of Republic of China under Grant No. MOST 110-
2221-E-110-054.

REFERENCES

[1] M. K. Gupta and P. Chandra, “A Comprehensive Survey of Data Mining,”
International Journal of Information Technology, Vol. 12, pp. 1243–1257,
February 2020.

[2] K. Kaithwas and P. Borkar, “A Review on Different Data Mining
Algorithms and Selection Methods,” Proc. of the 2019 Int. Conf. on
Intelligent Sustainable Systems, pp. 511–515, February 2019.

[3] R. Agrawal and R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules in Large Databases,” Proc. of the 20th Int. Conf. on
Very Large Data Bases, pp. 487–499, 1994.

[4] Z.-H. Deng, “DiffNodesets: An Efficient Structure for Fast Mining
Frequent Itemsets,” Applied Soft Computing, Vol. 41, pp. 214–223, April
2016.

[5] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without Candidate
Generation,” Proc. of the 2000 ACM SIGMOD Int. Conf. on Management
of Data, Vol. 29, No. 2, pp. 1–12, 2000.

[6] H. Bui, B. Vo, H. Nguyen, T.-A. Nguyen-Hoang, and T.-P. Hong, “A
Weighted N-List-Based Method for Mining Frequent Weighted Itemsets,”
Expert Systems with Applications, Vol. 96, pp. 388–405, April 2018.

[7] T. Le and B. Vo, “An N-List-Based Algorithm for Mining Frequent
Closed Patterns,” Expert Systems with Applications, Vol. 42, No. 19, pp.
6648–6657, Nov. 2015.

[8] B. Vo, S. Pham, T. Le, and Z.-H. Deng, “A Novel Approach for Mining
Maximal Frequent Patterns,” Expert Systems with Applications, Vol. 73,
pp. 178–186, May 2017.

[9] R. U. Kiran and M. Kitsuregawa, “Novel Techniques to Reduce Search
Space in Periodic-Frequent Pattern Mining,” Proc. of the 19th Int. Conf.
on Database Systems for Advanced Applications, pp. 377–391, April
2014.

[10] R. U. Kiran, M. Kitsuregawa, and P. K. Reddy, “Efficient Discovery of
Periodic-Frequent Patterns in Very Large Database,” The Journal of
Systems and Software, Vol. 112, pp. 110–121, Feb. 2016.

[11] R. U. Kiran and P. K. Reddy, “Towards Efficient Mining of Periodic-
Frequent Patterns in Transactional Databases,” Proc. of the 21th Int. Conf.
on Database and Expert Systems Applications, pp. 194–208, Aug./Sept.
2010.

[12] R. U. Kiran, J. N. Venkatesh, M. Toyoda, M. Kitsuregawa, and P. K.
Reddy, “Discovering Partial Periodic-Frequent Patterns in a
Transactional Database,” The Journal of Systems and Software, Vol. 125,
pp. 170–182, March 2017.

[13] A. Surana, R. U. Kiran, and P. K. Reddy, “An Efficient Approach to Mine
Periodic- Frequent Patterns in Transactional Databases,” Proc. of the 15th
Pacific-Asia Conf. on Knowledge Discovery and Data Mining, pp. 254–
266, May 2011.

[14] S.-S. Chen, T. C.-K. Huang, and Z.-M. Lin, “New and Efficient
Knowledge Discovery of Partial Periodic Patterns with Multiple
Minimum Supports,” The Journal of Systems and Software, Vol. 84, No.
10, pp. 1638–1651, Oct. 2011.

Authors’ background

Your Name Title* Research Field Personal website

 Ye-In Chang Full professor Data Mining https://db.cse.nsysu.edu.tw/~changyi/

 Xin-Long Chen Master student Data Mining https://db.cse.nsysu.edu.tw/~chenxl/

 Sheng-Hsin Chiang Master student Data Mining https://db.cse.nsysu.edu.tw/~chiangsh/

*This form helps us to understand your paper better, the form itself will not be published.

*Title can be chosen from: master student, Phd candidate, assistant professor, lecture, senior lecture, associate professor, full
professor

